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Qur aim is to order the vertices so that each has at most k — 1 lower-indexed
neighbors; greedy coloring for such an ordering yields the bound.

When G is not k-regular, we can choose a vertex of degree less than k as
vp. Since G is connected, we can grow a spanning tree of G from v,, assigning
indices in decreasing order as we reach vertices. Each vertex other than v, in
the resulting ordering v, ..., v, has a higher-indexed neiglhbor along the path
to v, in the tree. Hence each vertex has at most k¥ — 1 lower-indexed neighbors,
and the greedy coloring uses at most k colors.

e O N N

Ui

In the remaining case, G is k-regular. Suppose first that G has a cut-vertex
x, and let G’ be a subgraph consisting of a component of G — x together with its
edges to x. The degree of x in G’ is less than k, so the method above provides
a proper k-coloring of G’. By permuting the names of colors in the subgraphs
resulting in this way from components of G — x, we can make the colorings
agree on x to complete a proper k-coloring of G.

We may thus assume that G is 2-connected. In every vertex ordering, the
last vertex has k earlier neighbors. The greedy coloring idea may still work if
we arrange that two neighbors of v, get the same color.

In particular, suppose that some vertex v, has neighbors vy, vz such that
v ¥ v3 and G — {v1, vg} is connected. In this case, we index the vertices of a
spanning tree of G — {v1, v2} using 3, ..., n such that labels increase along paths
to the root v,. As before, each vertex before v, has at most k¥ — 1 lower indexed
neighbors. The greedy coloring also uses at most k — 1 colors on neighbors of
vp, since v; and vy receive the same color.

Hence it suffices to show that every 2-connected k-regular graph with k > 3
has such a triple vy, vg, v,. Choose a vertex x. If k(G — x) > 2, let v; be x and
let vs be a vertex with distance 2 from x. Such a vertex v, exists because G is
regular and is not a complete graph; let v, be a common neighbor of v; and vs.

If k(G — x) = 1, let v, = x. Since G has no cut-vertex, x has a neighbor in

every leaf block of G — x . Neighbors v, vz of x in two such blocks are nonadja--

cent. Also, G — {x, v1, v2} is connected, since blocks have no cut-vertices. Since
'k = 8, vertex x has another neighbor, and G — {v;, v2} is connected. 8
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5.1.23.* Remark. The bound x(G) < A(G) can be improved when G has no
large clique (Exercise 50). Brooks’ Theorem implies that the complete graphs
and odd cycles are the only k — 1-regular k-critical graphs (Exercise 47). Gallai
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[1963b] strengthened this by proving that in the subgraph of a k-critical graph
induced by the vertices of degree k — 1, every block is a clique or an odd cycle.

Brooks’ Theorem states that x(G) < A(G) whenever 3 < w(G) < A(G).
Borodin and Kostochka [1977] conjectured that w(G) < A(G) implies x(G) <
A(G) if A(G) > 9 (examples show that the condition A(G) > 9 is needed). Reed
[1999] proved that this is true when A(G) > 104,

Reed [1998] also conjectured that the chromatic number is bounded lgy the
average of the trivial upper and lower bounds; that is, x(G) < [ 2@4+e@] g

Because the idea of partitioning to satisfy constraints is so fundamental,
there are many, many variations and generalizations of graph coloring. In
Chapter 7 we consider coloring the edges of a graph. Sticking to vertices, we
could allow color classes to induce subgraphs other than independent sets (“gen-
eralized coloring”—Exercises 49-53). We could restrict the colors allowed to be
used on each vertex (“list coloring”—Section 8:4). We could ask questions in-
volving numerical values of the colors (Exercise 54). We have only touched the
tip of the iceberg on coloring problems.

EXERCISES

5.1.1. (—) Compute the clique number, the independence number, and the chromatic
number of the graph below. Does either bound in Proposition 5.1.7 prove optimality for
some proper coloring? Is the graph color-critical?

5.1.2. (-) Prove that the chromatic number of a graph equals the maximum of the
chromatic numbers of its components.

8.1.3. (-) Let G4, ..., G be the blocks of a graph G. Prove that x(G) = max; x (G)).
5.1.4. (—) Exhibit a graph G with a vertex v so that x(G—v) < x(G) and x(G—v) < x(G).

5.1.5. (—) Given graphs G and H, prove that x(G + H) = max{x(G). x(H)} and that
x(G v H) = x(G) + x(H).

5.1.8. (—) Suppose that x(G) = @(G) + 1, as in Example 5.1.8. Let H, = G and H; =
Hi_1 v G for k > 1. Prove that X(H) = w(H) +k.

5.1.7. (—) Construct a graph G that is neither a clique nor an odd cycle but has a vertex
ordering relative to which greedy coloring uses A(G) + 1 colors.

5.1.8. (—) Prove that maxycc 8(H) < A(G) to explain why Theorem 5.1.19 is better
than Proposition 5.1.13. Determine all graphs G such that maxycg §(H) = A(G).

5.1.9. (=) Draw the graph K, 30 P; and exhibit an optimal coloring of it. Draw Cs DCj
and find a proper 3-coloring of it with color classes of sizes 9, 8, 8.
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5.1.10. (-) Prove that GO H decomposes into n(G) copies of H and n(H) copiesof G.
5.1.11. (-) Prove that each graph below is isomorphic to C30Cs.

5.1.12. (-) Prove or disprove: Every k-chromatic graph G has a proper k-coloring in
which some color class has «(G) vertices.

5.1.13. (—) Prove or disprove: If G = F U H, then x(G) < x(F) + x(H).
5.1.14. (—) Prove or disprove: For every graph G, x(G) < n(G) —«(G) + 1.

5.1.15. (—) Prove or disprove: If G is a connected graph, then x(G) < 1 + a(G), where
a(G) is the average of the vertex degrees in G.

5.1.16. (—) Use Theorem 5.1.21 to prove that every tournament has a spanning path.
(Rédei [1934])

5.1.17. (=) Use Lemma 5.1.18 to prove that x(G) < 4 for the graph G below.

5.1.18. (—) Determine the number of colors needed to label V(K,) such that each color
class induces a subgraph with maximum degree at most k.

5.1.19. (-) Find the error in the false argument below for Brooks’ Theorem (Theorem
5.1.22).

“We use induction on n(G); the statement holds when n(G) = 1. For the induction
step, suppose that G is not a complete graph or an odd cycle. Since x(G) < §(G), the
graph G has a separating set § of size at most A(G). Let Gy, ..., G, be the components
of G — S, and let H; = G[V(G;) U §]. By the induction hypothesis, each H; is A(G)-
colorable. Permute the names of the colors used on these subgraphs to agree on §. This
yields a proper A(G)-coloring of G.”

L L L] L] L]
5.1.20. () Let G be a graph whose odd cycles are pairwise intersecting, meaning that
every two odd cycles in G have a common vertex, Prove that x(G) < 5.

5.1.21. Suppose that every edge of a graph G appears in at most one cycle. Prove that
every block of G is an edge, a cycle, or an isolated vertex. Use this to prove that x (G) < 3.

5.1.22. (!) Given a set of lines in the plane with no three meeting at a point, form a
graph G whose vertices are the intersections of the lines, with two vertices adjacent
if they appear consecutively on one of the lines. Prove that x(G) < 3. (Hint: This
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can be solved by using the Szekeres—Wilf Theorem or by using greedy colori: ; with an
appropriate vertex ordering. Comment: The conclusion may fail when three lines are
allowed to share a point.) (H. Sachs)
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5.1.23. (!) Place n points on a circle, where n > k(k+1). Let G, be the 2k-regular graph
obtained by joining each point to the k nearest points in each direction on the circle. For
example, G, ; = C,, and Gy 2 appears below. Prove that x(G,;) = k + 1 if k + 1 divides
nand x(Gnx) = k + 2 ifk + 1 does not divide n. Prove that the lower bound on n cannot
be weakened, by proving that x (Gepsy—14) > k+2ifk = 2.

5.1.24. (+) Let G be any 20-regular graph with 360 vertices formed in the following way.
The vertices are evenly-spaced around a circle. Vertices separated by 1 or 2 degrees are
onadjacent. Vertices separated by 3, 4, 5 or 6 degrees are adjacent. No information
is given about other adjacencies (except that G is 20-regular). Prove that x(G) < 19.
(Hint: Color successive vertices in order around the circle.) (Pritikin)

5.1.25. (+) Let G be the unit-distance graph in the plare; V(G) = R?, and two points
are adjacent if their Euclidean distance is 1 (this is an infinite graph). Prove that 4 <
x(G) < 7. (Hint: For the upper bound, present an explicit coloring by regions, paying
attention to the boundaries.) (Hadwiger [1945, 1961], Moser—Moser [1961])

5.1.26. Given finite sets 5;,..., Sy, let U = §; x ... x §,,. Define a graph G with vertex
set U by putting u < vifand only if ¥ and v differ in every coordinate. Determine x (G).

5.1.27. Let H be the complement of the graph in Exercise 5.1.26. Determine x (H).

5.1.28. Consider a traffic signal controlled by two switches, each of which can be set in
n positions. For each setting of the switches, the traffic signal shows one of its n possible
colors. Whenever the setting of both switches changes, the color changes. Prove that
the color shown is determined by the position of one of the switches. Interpret this in
terms of the chromatic number of some graph. (Greenwell-Lovész [1974])

5.1.29. For the graph G below, compute x(G) and find a x (G)-eritical subgraph.
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5.1.30. (+) Let § = ([;]) denote the collection of 2-sets of the n-element set [n]. Define
the graph G, by V(G,) = § and E(G,) = ((ij, jk): 1 <i < j < k < n} (disjoint pairs,
for example, are nonadjacent). Prove that x(G,) = [lgn]. (Hint: Prove that G, is r-
colorable if and only if [r] has at least n distinct subsets. Comment: G, is called the
shift graph of X,.) (attributed to A. Hajnal)

5.1.31. (!) Prove that a graph G is m-colorable if and only if «(G O K,,) = n(G). (Berge
[1973, p379-801)

5.1.32. (!) Prove that a graph G is 2*-colorable if and only if G is the union of  bipartite
graphs. (Hint: This generalizes Theorem 1.2.23.)

5.1.33. (!) Prove that every graph G has a vertex ordering relative to which greedy
coloring uses x (G) colors.

5.1.34. (1) For all k € N, construct a tree T, with maximum degree k and an ordering o
of V(T}) such that greedy coloring relative to the ordering o uses k + 1 colors. (Hint: Use
induction and construct the tree and ordering simultaneously. Comment: This result
shows that the performance ratio of greedy coloring to optimal coloring can be as bad as
(A(G) + 1)/2.) (Bean [1976])

5.1.35. Let G be a graph having no induced subgraph isomorphic to P;. Prove that
r every vertex ordering, greedy coloring produces an optimal coloring of G. (Hint:
Suppose that the algorithm uses k colors for the ordering vy, ..., v, and let i be the
smallest integer such that G has a clique consisting of vertices assigned colors i through
k in this coloring. Prove thati = 1. Comment: P,-free graphs are also called cographs.)

5.1.36. Given a vertex ordering 6 = vy,..., v, of a graph G, let G; = G[{v1, ..., v}l and
fl(o) = 1+ max; dg,(vi). Greedy coloring relative to o yields x(G) < f(o). Define ¢*
by letting v, be a minimum degree vertex of G and letting v; for i < n be a minimum
degree vertex of G — {vi41, ..., U,}. Show that f(0*) = 1+ maxycs 8(H), and thus thato*
minimizes f(o). (Halin [1967], Matula [1968], Finck-Sachs [1969], Lick—White [1970])

6.1.37. Prove that V(G) can be partitioned into 1 + maxycs 8(H)/r classes such that
every subgraph whose vertices lie in a single class has a vertex ot degree less than r.
(Hint: Consider ordering o* of Exercise 5.1.36. Comment: This generalizes Theorem
5.1.19. See also Chartrand—Kronk [1969] when r = 2.)

5.1.38. () Prove that x(G) = w(G) when G is bipartite. (Hint: Phrase the claim in
terms of G and apply results on bipartite graphs.)

5.1.39. (1) Prove that every k-chromatic graph has at least (;) edges. Use this to prove

that if G is the union of m complete graphs of order m, then x(G) < 1 4+ m+y/m —1,
(Comment: This bound is near tight, but the Erdés—Faber-Lovasz Conjeclure (see Erdds
[1981]) asserts that x (G) = m when the complete graphs are pairwise edge-disjoint.)

5.1.40. Prove that x(G) - x(G) = n(G), use this to prove that x(G) + x (@) = 2v/n(5),
and provide a construction achieving these bounds whenever ./n(G) is an integer.
(Nordhaus-Gaddum [1956], Finck [1968])

5.1.41. (1) Prove that x (G)+x(G) < n(G)+1. (Hint: Use induction on n(G).) (Nordhaus—
ddum [1956])

5.1.42. (!) Looseness of x(G) = n(G)/x(G). Let G be an n-vertex graph, and let ¢ =
(n + 1)/a(G). Use Exercise 5.1.41 to prove that x(G) - x(G) < (n + 1)2/4, and use
this to prove that x(G) < c¢(n + 1)/4. For each odd n, construct a graph such that
X(G) = ¢(n + 1)/4. (Nordhaus—Gaddum [1956], Finck [1968])
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5.1.43. () Paths and chromatic number in digraphs.

a) Let G = F U H. Prove that x(G) < x(F)x(H).

b) Consider an orientation D of G and a function f: V(G) — R. Use part (a) and
Theorem 5.1.21 to prove that if x(G) > rs, then D has a path up — --- — u, with
fuo) < +++ < f(u,) or apath vp — - -+ — v, with f(vo) > -+ > f(vo).

¢) Use part (b) to prove that every sequence of rs + 1 distinct real numbers has an
increasing subsequence of size r + 1 or a decreasing subsequence of size s + 1. (Erdés—
Szekeres [1935])

.1.44. (!) Minty’s Theorem (Minty [1962]). An acyclic orientation of a loopless graph
an orientation having no cycle. For each acyclic orientation D of G, let r(D) =
axc [a/b], where C is a cycle in G and a, b count the edges of C that are forward in
D or backward in D, respectively. Fix a vertex x € V(G), and let W be a walk in G be-
ginning at x. Let g(W) = a — b - r(D), where a is the number of steps along W that are
forward edges in D and b is the number that are backward in D. For each y € V(G), let
£(y) be the maximum of g(W) such that W is an x, y-walk (assume that G is connected).
a) Prove that g(y) is finite and thus well-defined, and use g(y) to obtain a proper
1+ r(D)-coloring of G. Thus G is 1 + r(D)-colorable.
b) Prove that x (G) = minp.p, where D is the set of acyclic orientations of G.

5.1.45. (+) Use Minty’s Theorem (Exercise 5.1.44) to prove Theorem 5.1.21. (Hint:
Prove that [ (D) is maximized by some acyclic orientation of G.)

5.1.46. (+) Prove that the 4-regular triangle-free graphs below are 4-chromatic. (Hint:
Consider the maximum independent sets. Comment: Chvétal [1970] showed that the
graph on the left is the smallest triangle-free 4-regular 4-chromatic graph.)

5.1.47. (!) Prove that Brooks’ Theorem is equivalent to the following statement: every
k — 1-regular k-critical graph is a complete graph or an odd cycle.

5.1.48. Let G be a simple graph with n vertices and m edges and maximum degree
at most 3. Suppose that no component of G is a complete graph on 4 vertices. Prove
that G contains a bipartite subgraph with at least m — n /3 edges. (Hint: Apply Brooks’
Theorem, and then show how to delete a few edges to change a proper 3-coloring of G
into a proper 2-coloring of a large subgraph of G.)

5.1.49. (—) Prove that the Petersen graph can be 2-colored so that the subgraph induced
by each color class consists of isolated edges and vertices.

5.1.50. (!) Improvement of Brooks’ Theorem.

a) Given a graph G, let ki, ..., k, be nonnegative integers with " k; > A(G) —r + 1.
e that V(G) can be partitioned into sets V;,..., V; so that for each i, the subgraph
G; iyduced by V; has maximum degree at most k;.. (Hint: Prove that the partition
minimizing 3} e(G;)/ k; has the desired property.) (Lovész [1966])
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b) For 4 < r < A(G) + 1, use part (a) to prove that x(G) < [if—l(A(G) —+ 1)] when
G has no r-clique. (Borodin—Kostochka [1977], Catlin [1978], Lawrence [1978])

5.1.51. (!) Let G be an k-colorable graph, and let P be a set of vertices in G such that
d(x,y) = 4 whenever x,y € P. Prove that every coloring of P with colors from [k + 1]
extends to a proper k + 1 coloring of G. (Albertson—Moore [1999])

5.1.52. Prove that every graph G can be [(A(G) + 1)/j]-colored so that each color class
induces a subgraph having no j-edge-connected subgraph. For j > 1, prove that no
smaller number of classes suffices when G is a j-regular j-edge-connected graph or
is a complete graph with order congruent to 1 modulo j. (Comment: For j = 1, the
restriction reduces to ordinary proper coloring.) (Matula [1973])

5.1.53. (+) Let G, be the 2k-regular graph of Exercise 5.1.23. For k < 4, determine the
values of n such that G, can be 2-colored so that each color class induces a subgraph
with maximum degree at most k. (Weaver—West [1994])

.1.54. Let f be a proper coloring of a graph G in which the colors are natural numbers.
The color sum is ZUEV(G f(v). Minimizing the color sum may require using more than
(G) colors. In the tree below, for example, the best proper 2-coloring has color sum
12, while there is a proper 3-coloring with color sum 11. Construct a sequence of trees
in which the kth tree 7} use k colors in a proper coloring that minimizes the color sum.
(Kubicka—Schwenk [1989])

2 1 1 1
2¥—<1 . 1 1>—<3 : 1
2¢7 1 1 1

5.1.55. (+) Chromatic number is bounded by one plus longest odd cycle length.

a) Let G be a 2-connected nonbipartite graph containing an even cycle C. Prove
that there exist vertices x, y on C and an x, y-path P internally disjoint from C such
that dc(x, ¥) # dp(x, y) mod 2.

b) Let G be a simple graph with no odd cycle having length at least 2k + 1. Prove
that if §(G) > 2k, then G has a cycle of length at least 4k. (Hint: Consider the neighbors
of an endpoint of a maximal path.)

¢) Let G be a 2-connected nonbipartite graph with no odd cycle longer than 2k - 1.
Prove that x(G) < 2k. (Erdés—-Hajnal [1966])

5.2. Structure of k-chromatic Graphs

We have observed that x (H) > w(H) for all H. Whén equality holds in this
bound for G and all its induced subgraphs (as for interval graphs), we say that
G is perfect; we discuss such graphs in Sections 5.3 and 8.1. Our concern with
the bound x (G) = w(G) in this section is how bad it can be. Almost always x (G)
is much larger than w(G), in a sense discussed precisely in Section 8.5. (The
average values of w(G), «(G), and x (G) over all graphs with vertex set [n] are
very close to 21gn, 21gn, and n/(2lgn), respectively. Hence w(G) is generally
a bad lower bound on x(G), and n/a(G) is generally a good lower bound.)
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GRAPHS WITH LARGE CHROMATIC NUMBER

The bound x(G) > @(G) can be tight, but it can also be very loose. There
have been many constructions of graphs without triangles that have arbitrarily
large chromatic number. We present one such construction here; others appear
in Exercises 12-13.

5.2.1. Definition. From a simple graph G, Mycielski’s construction pro-
duces a simple graph G’ containing G. Beginning with G having vertex
set {v1,..., vy}, add vertices U = {ui,..., u,} and one more vertex w. Add
edges to make u; adjacent to all of Ng(v;), and finally let N(w) = U.

L] vg Uy

vy 1 L]

5.2.2. Example. From the 2-chromatic graph K3, one iteration of Mycielski’s
construction yields the 3-chromatic graph C;, as shown above. Below we apply
the construction to Cs, producing the 4-chromatic Grétzsch graph. [ ]

5.2.8. Theorem. (Mycielski [1955]) From a k-chromatic triangle-free graph G,
Mycielski’s construction produces a k + 1-chromatic triangle-free graph G'.

Proof: Let V(G) = {v1,...,v,}, and let G’ be the graph produced from it by
Myecielski’s construction. Let uy, ..., u, be the copies of vi, ..., v,, with w the
additional vertex. Let U = {uy, ..., u,}.

By construction, U is an independent set in G’. Hence the other vertices of
any triangle containing u; belong to V(G) and are neighbors of v;. This would
complete a triangle in G, which can’t exist. We conclude that G’ is triangle-free.

A proper k-coloring f of G extends to a proper k+ 1-coloring of G’ by setting
f(u;) = f(v;) and f(w) = k + 1; hence x(G’) < x(G) + 1. We prove equality by
showing that x(G) < x(G'). To prove this we consider any proper coloring of
G' and obtain from it a proper coloring of G using fewer colors.

Let g be a proper k-coloring of G’ By changing the names of colors, we may
assume that g(w) = k. This restricts g to {1, ...,k — 1} on U. On V(G), it may
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k(n(G) — n(H") + 1) edges. Since §(G) > 2k, every 1-vertex subgraph of G is
such a subgraph. Since such subgraphs exist, we may choose H to be a maximal
subgraph with this property.

Let S be the set of vertices outside H with neighbors in H, and let G' =
G[S]. We need only show that §(G') > k. Each x € V(G’) has a neighbor
y € V(H). In G - (H Uxy), the edges incident to x in G’ collapse onto edges from
V(G') to H that appear in G - H, and the edge xy contracts. Hence ¢(G - H) —
e(G < (H Uxy)) = dg(x) + 1. By the choice of H, this difference is more than k,
and hence §(G') = k. : [ |

5.2.23.* Theorem. (Mader [1967], see Thomassen [1988]) If F and G are sim-
ple graphs with e(F) = m and §(F) = 1, then §(G) > 2™ implies that G
contains a subdivision of F.

Proof: We use induction on m. The claim is trivial for m < 1. Consider m > 2.

By Lemma 5.2.22, we may choose disjoint subgraphs H and G’ in G such that

H is connected, §(G’) > 2™~1, and every vertex of G’ has a neighbor in H,

If F has an edge ¢ = xy such that §(F —¢) = 1, then the induction hy-
pothesis yields a subdivision J of F — ¢ in ¢’. A path through H can be added
between the vertices of J representing x and y to complete a subdivision of F.

If §(F — e) = 0 for all e € E(F), then every edge of F is incident to a leaf.
Now F is a forest of stars, and §(G) > 2™ > 2m allows us to find F itself in G;
we leave this claim to Exercise 42. [ ]

5.2.24.* Remark. The case when F is a complete graph remains of particular
interest. Let f(k) be the minimum d such that every graph with minimum

degree at least d contains a K;-subdivision. Theorem 5.2.23 yields f(k) < 2(5)._

Komlés—Szemerédi [1996] and Bollobds-Thomason [1998] proved that f(k) <
ck? for some constant ¢ (the latter shows ¢ < 256). Since K, ,_1 has no Ka-
subdivision when m = k(k + 1)/2 (Exercise 41), we have f(k) > k?/8.

Exercise 38 yields f(4) = 3. Furthermore, f(5) = 6. The icosahedron
(Exercise 7.3.8) yields f(5) > 6, since this graph is 5-regular and has no K;-
subdivision. On the other hand, Mader [1998] proved Dirac’s conjecture [1964]
that every n-vertex graph with at least 3n — 5 edges contains a Ks-subdivision,
By the degree-sum formula, 5(G) > 6 yields at least 3n edges; hence f(5) < 6.

Finally, we note that Scott [1997] proved a subdivision version of the
Gyéarfas—Sumner Conjecture (Remark 5.2.4) for each tree T and integer k: If G
has with no k-clique but x (G) is sufficiently large, then G contains a subdivision
of T as an induced subgraph. [ ]

EXERCISES

ph such that x (G — x — y) = x(G) — 2 for all pairs x, y of distinct
G is a complete graph. (Comment: Lovdsz conjectured that the
when the condition is imposed only on pairs of adjacent vertices.)
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5.2.2. (—) Prove that a simple graph is a complete multipartite graph if and only if it
has no 3-vertex induced subgraph with one edge.

5.2.3. (—) The results below imply that there is no k-critifal graph with k + 1 vertices.
a) Let x and y be vertices in a k-critical ph G/ Prove that N(x) € N(y) is
impossible. Conclude that no k-critical graph has k™ yertices.
b) Prove that x(G v H) = x(G) + x(H), and that is color-critical if and only if
both G and H are color-critical. Conclude that Csv K /5, wi + 2 vertices, is k-criti’ al.

{va, ..., vy, } defined by v; < = if

5.2.6. Determine the minimum number of edges in a connected n-vertex graph with
chromatic number k. (Hint: Consider a k-critical subgraph.) (ErSov-KoZuhin [1962]—
see Bhasker—Samad-West [1994] for higher connectivity.)

5.2.7. () Given an optimal coloring of a k-chromatic graph, prove that for each color i
there is a vertex with color i that is adjacent to vertices of the other k — 1 colors.

5.2.8. Use properties of color-critical graphs to prove Proposition 5.1.14 again: x(G) <
1 + max; min(d;,i — 1}, where d, = -- - = d, are the vertex degrees in G.

5.2.9. () Prove thatifGisa itical graph, then the graph G’ generated from it
by applying Mycielski’s construc is also color-critical.

5.2.10. Given a graph G with vertex get uf, ..., v,, let G’ be the graph generated from
G by Mycielski’s construction. Let H bk g/subgraph of G. Let G” be the graph obtained
from G’ by adding the edges {uu;: v;v; (H)}. Prove that x(G") = x(G) + 1 and that
w(G") = max{w(G), w(H) + 1). (Pritiki

5.2.11. (!) Prove that if G has no induced 2X3, then x(G) < (*9'?). (Hint: Use a

maximum clique efine a collection of ("’(G]) + @(G) independent sets that cover the
: This is a special case cvfEl the Gyarfis—Sumner Conjecture—Remark

t Gy = Ky. For k > 1, construct G, as follows. To the disjoint union
-1, and add an independent set T of size n:: n(G;). For each choice of
in V(G1)x- - -x V(Gg-1), let one vertex of T have neighborhood {v,, ..., U1}
G4 below, neighbors are shown for only two elements of T'.)
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5.2.18. (+) Let G be a k-chromatic graph witdl girth 6 and order n. Construct G’ as
ew vertices. Take (" pmrmse disjoint
copies of G, one for each way to choose an | § C T. Add a matching between each
copy of G and its corresponding n-set S.

can start and these graphs exist.) (Blapiche Descartey [1947, 1954])

G G G G
M O -
T

5.2.14. Chromatic number and cycie lengths.

a) Let v be a vertex in a graph G. Among all spanmng trees of G, let T be one
that maximizes z“wa} dr(u, v). Prove that every edge of G joins vertices belonging to
a path in T starting at v.

b) Prove that if x(G) > k, then G has a cycle whose length is one more than a
multiple of k. (Hint: Use the tree T of part (a) to define a k-coloring of G.) (Tuza)

5.2.15. (!) Prove that a triangle-free graph Wwith n verticegis colorable with 2./n colors.
s at least k?/4 vertices.)

6.2,16. (!) Prove that every n-vertex simple grapk/with no r + 1-clique has at most
(1 — 1/r)n?/2 edges. (Hint: This can be proved 4n’s Theorem or by induction
on r without Turédn’s Theorem.)

5.2.17. (!) Let G be a simple n-vertex gr
a) Prove that ©(G) > [n?/(n? —

ercise 5.2.16. Comment: This also yi
b) Prove that a(G) > [n/(d

1ds x (G) = [n?/(n® — 2m)
)], where d is the average v

(Myers—Liu [1972])
degree of G. (Hint:

a) Prove that e(T,,,) =\1 — 1/:-)»’/2 b(r —b)/[2r).

b) Since e(G) must be ah\integer, part (a) implies e(T;,,) < | (1 - 1/r)n®/2|. Deter-
mine the smallest r such that\strict inequality oécurs for some n. For this value of r,
determine all n such that e(2,,,) 2

5.2.20. Given positive mtegers n and f\let ¢ = |n/k|,r =n —gk, s = |n/(k + 1)), and
t =n—s(k+1). Prove that (§)k + rg/> () (k +1) + ts. (Hint: Consider the complement

graph T,, is the unique grafh having the myximum number of edges, (Hint: Examine
theproofofTheoremS. ¢
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a) Prove that a max i i 0 r + 1-clique has an r-clique.
b) Prove that e(T,,) X (;

and at least one r + 1-clique, whéye e that G has at least f,(n) + 1 —k cliques

of order r + 1, where f,(n) =n — int: Prove that a graph with exactly one

r + 1-clique has at most t,(n) — f,(N) edges.) (Erdés [1964], Moon [1965¢])

5.2.25. Partial analogue of Turdn’s
a) Prove that if G is simple and

(Hint: View K3, as two vertices with
b) Prove that 3, ., , (5) = €(24

'm for Ko m.
levio) (‘g") > (m — 1)(;), then G contains Ka .
common neighbors.)

g, prove that the distance is exactly 1 for

5.2.30. (+) Prove that if G has a proRer cojoring g in which every color class has at least
two vertices, then G has an optimal colorijig f in which every color class has at least two
verhoe& (Hint: If f hasaoolor class Wi
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5.2.33. Let G be a k-critical graph having a separating set § = {x, y}. By Proposition
5.2.18, x #» y. Prove that G has exactly two S-lobes and that they can be named G, G
such that G + xy is k-critical and Gs - xy is k-critical (here G3 - xy denotes the graph
obtained from G; by adding xy and then contracting it).

5.2.34. (1) Let G be a 4-critical graph having a separa
G[S] has at most four edges. (Pritiki

5.2.35. (+) Alternative proof that k-critical graphsAre k — 1-edge-connected.
a) Let G be a k-critical graph, with k% 3.
a k — l-critical subgraph of G containing e
b) Use part (a) and induction on k to
graph is k — 1-edge-connected. (Toft [197,

5.2.36. (+) Prove that if G is k-criticg¥and every k \ 1-critical subgraph of G is isomor-
phic to K1, then G = K, (if k = 44 (Hint: Use ToftMcritical graph lemma—Exercise
5.2.35a.) (Stiebitz [1985])

5.2.37. A graph G is vertex-color-critical if x (G — v) < x(G) for all v € V(G).

a) Prove that every color-critical graph is vertex-color-critical.

b) Prove that every 3-chromatic vertex-color-critical graph is color-critical.

¢) Prove that the graph below is vertex-color-critical but not color-critical. (Com-
ment: This is not the Grétzsch graph.)

set S of size 4. Prove that

e Dirac’s Theorem that every k-critical

5.2.38. (!) Prove that every simple graph with minimum degre€ at least 3 contains a K-
subdivision. (Hint: Prove a stronger result—every nontrividl simple graph with at most
one vertex of degree less than 3 cqntains a K4-subdivigjen. The proof of Theorem 5.2.20
already shows that every 3-connectiad graph contaigg’a K,-subdivision.) (Dirac [1952a])

5.2.39. () Given that §(G) = 3 forces a\ks-subdivision in G, prove that the maximum
number of edges in a simple n-vertex graphywith no Ks-subdivision is 2n — 3.

ex in one circle is adjacent to every
as no Kr-subdivision. Prove that
x(H) = 8 but H has no Kg-subdnn on. (Catlin [1979
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5.2.41. Let m = k(k + 1)/2. Rrove that K, ,,_1 Jfis no Ka;-subdivision.

5.2.42, (+) Let F be a forest w

F'. Use Hall’s Theorem to show that /A can be matched into the remaining vertices to
complete a copy of F.) (Brandt [1994

5.3. Enumerative Aspects

Sometimes we can shed light on a hard problem by considering a more
general problem. No good algorithm to test existence of a proper k-coloring is
known (see Appendix B), but still we can study the number of proper k-colorings
(here we fix a particular set of k colors). The chromatic number x(G) is the
minimum k such that the count is positive; knowing the count for all k would
tell us the chromatic number. Birkhoff [1912] introduced this counting problem
as a possible way to attack the Four Color Problem (Section 6.3).

In this section, we will discuss properties of the counting function, classes
where it is easy to compute, and further related topics.

COUNTING PROPER COLORINGS

‘We start by defining the counting problem as a function of k.

5.3.1. Definition. Given k € N and a graph G, the value x(G; k) is the number
of proper colorings f: V(G) — [k]l. The set of available colors is [k] =
{1,...,k}; the k colors need not all be used in a coloring f. Changing the
names of the colors that are used produces a different coloring.

5.3.2. Example. x(K,;: k) =k" and x(Kn;k)) =k(k—1)---(k —n + 1).
When coloring the vertices of K,, we can use any of the k colors at each
vertex no matter what colors we have used at other vertices. Each of the k"
functions from the vertex set to [k] is a proper coloring, and hence x (K ,; k) = k"
When we color the vertices of K, the colors chosen earlier cannot be used on
the ith vertex. There remain k—i-+1 choices for the color of the ith vertex no mat-
ter how the earlier colors were chosen. Hence x(K,; k) = k(k = 1)---(k—n+1).
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5.3.23.* Definition. A transitive orientation of a graph G is an orientation
D such that whenever xy and yz are edgesin D, also there is an edge xz in
G that is oriented from x to z in D. A simple graph G is a comparability
graph if it has a transitive orientation.

5.3.24.* Example. If G is an X, Y-bigraph, then directing every edge from X to
Y yields a transitive orientation. Thus every bipartite graph is a comparability
graph. Transitive orientations arise from order relations; x — y could mean “x
contains y”, which is a transitive relation. [ |

5.3.25.* Proposition. (Berge [1960]) Comparability graphs are perfect.

Proof: Every induced subdigraph of a transitive digraph is transitive, so the
class of comparability graphs is hereditary. Thus we need only show that each
comparability graph G is «(G)-colorable.

Let F be a transitive orientation of G; note that F has no cycle. As shown
in proving Theorem 5.1.21, the coloring of G that assigns to each vertex v the
number of vertices in the longest path of F ending at v is a proper coloring.
By transitivity, the vertices of a path in F form a clique in G. Thus we have
x(G) < w(G). u

COUNTING ACYCLIC ORIENTATIONS (optional)

Surprisingly, x (G; k) has meaning when k is a negative integer. An acyclic
orientation of a graph is an orientation having no cycle. Setting k = —1 in
x (G k) enables us to count the acyclic orientations of G.

5.3.26. Example. Since C4 has 4 edges, it has 16 orientations. Of these, 14
are acyclic. In Example 5.3.7, we proved that x(Cy; k) = k(k — 1)(k? — 3k 4 3).
Evaluated at k = —1, this equals (- 1)(—2)(7) = 14. [ ]

5.3.27. Theorem. (Stanley [1973]) The value of x(G; k) at k = —1 is (—1)"©@
times the number of acyclic orientations of G.

Proof: We use induction on ¢(G). Let a(G) be the number of acyclic orientations
of G. When G has no edges, a(G) = 1 and x(G; —1) = (-1)"@, so the ¢laim
holds. We will prove that a(G) = a(G — €) + a(G - e) for ¢ € E(G). If so, then
we apply the recurrence for a, the induction hypothesis for a(G) in terms of
x(G; k), and the chromatic recurrence te compute

a(G) = (-1)'©x(G - &; =1) + (-1)"P1x(G - ¢; —1) = (-1)"Dx(G; -1).

Now we prove the recurrence for a. Every acyclic orientation of G contains
an acyclic orientation of G —e. An acyclic orientation D of G — e may extend to
0, 1, or 2 acyclic orientations of G by orienting the edge ¢ = vv. When D has
no u, v-path, we can choose v — 1. When D has no v, u-path, we can choose
u — v. Since D is acyclic, D cannot have both a u, v-path and a v, u-path, so
the two choices for e cannot both be forbidden.
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Hence every D extendsin at least one way, and a(G) equals a(G —e) plus the
number of orientations that extend in both ways. Those extending in both ways
are the acyclic orientations of G — e with o u, v-path end no v, u-path. There
are exactly a(G - e) of these, since a u, v-path or a v, u-path in an orientation of
G — e becomes a cycle in G - e. B

The interpretation of x(G;k) for general negative k (Exercise 32) is an
instance of the phenomenon of “combinatorial reciprocity” (Stanley [1974]).

EXERCISES

Keep in mind that the notation x(G; k) may be viewed as a polynomial or as the
number of proper k-colorings of G.

5.3.1. (—) Compute the chromatic polynomials of the graphs below.
5.3.2, (—) Use the chromatic recurrence to obtain the chromatic polynomial of every
tree with n vertices.

5.3.3. (—) Prove that k* — 4k® + 8k? is not a chromatic polynomial.

L] L] L] L] .

5.3.4. a) Prove that x(Co; k) = (k — )" + (=1)"(k - 1).
b) For H = G v K, prove that x(F; k) = kx(G; k — 1). From this and part (a), find
the chromatic polynomial of the wheel C, v K;.

5.3.5. For n = 1, let G, = P, 0Kj; this is the graph with 2n vertices and 3n — 2 edges
shown below. Prove that x (G,: k) = (k* — 8k + 8"~ k(k — 1).

5.3.6. (!) Let G be a graph with n vertices. Use Proposition 5.3.4 to give a non-inductive
proof that the coefficient of k*~! ih x (G; k) is —e(G).

5.3.7. Prove that the chromatic polynomial of an n-vertex graph has no real root larger
than n — 1. (Hint: Use Proposition 5.3.4.)

5.3.8. (!) Prove that the number of proper k-colorings of a connected graph G is less
than k(k — 1)"~! if k > 3 and G is not a tree. What happens when k = 2?

5.3.9. (1) Prove that x(G;x + y) = X_ycy(e X(GU); ¥)x(GIU); y). (Hint: Since both
sides are polynomials, it suffices to prove equality when x and y are positive integers;
do this by counting proper x + y-colorings in a different way.)
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5.3.10. Let G be a connected graph with x(G; k) = Z::(—l}*'a,-k"“. Forl<i<n,
prove that a; > ( 1) (Hint: Use the chromatic recurrence.)

5.3.11. (!) Prove that the sum of the coefficients of x (G; k) is 0 unless G has no edges.
(Hint: When a function is a polynomial, how can one obtain the sum of the coefficients?)

5.3.12. (+) Coefficients of x(G; k).

a) Prove that the \ast nonzero term in the chromatic polynomial of G is jhe term
whose exponent is the dumber of components of G.

b) Use part (a) to pryve that if p(k) = k" —ak" ' +---£ck” anda > ("5), then pis
not a chromatic polynominl. (For example, this immediately implies that he polynomial
in Exercise 5.3.3 is not a ¢hromatic polynomial.)

5.3.13. Let G and H be griphs, possibly overlapping.

a) Prove that x(G U H\k) = % when G N H is a comyflete graph.

b) Consider two paths \whose union is a cycle to show thgt the formula may fail
when G N H is not a completg graph.

c) Apply part (a) to conclyde that the chromatic number 4f a graph is the maximum
of the chromatic numbers of ils blocks.

5.3.14. () Let P be the Petersén graph. By Brooks’ Thegrem, the Petersen graph is 3-
colorable, and hence by the pigépnhole principle it has gh independent set § of size 4.

a) Prove that P — § = 3K,.

b) Using part (a) and symmietry, determine the/number of vertex partitions of P
into three independent sets.

¢) In general, how can the nulnber of partitipghs into the minimum number of inde-
pendent sets be obtained from the thromatic pglynomial of G?

.15, Prove that a graph with chrpmatic nmber k has at most k"~* vertex partitions
into k independent sets, with equalily achighved only by Ky + (n — k) K, (a k-clique plus
— k isolated vertices). (Hint: Use irductfon on n and consider the deletion of a single
.) (Tomescu [1971])

5-3. 6. Let G be a simple graph with g\vertices and m edges. Prove that G has at most
1(3) triangles. Conclude that the cogffidient of k*~2 in x (G; k) is positive, unless G has
at most one edge. (Hint: Use Theorgm 5\3.10.)

5.3.17. (*) Use the inclusion-exclision p iple to prove Theorem 5.3.10 directly.

5.3.18. () Consider the chromgftic polynomjals of the graphs below.

a) Without computing th¢m, give a shokt proof that they are equal.

b) Express this chromatic polynomial a4 the sum of the chromatic polynomials of
two chordal graphs, and us¢ this to give a oneline computation of it.

AN AN
SVZdRN\v

ined from Kg by subdividing one edge. Use the
G; k) as a product of linear factors (factors of the
graph. (Read [1975], Dmitriev [1980])
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5.3.20.\Let G be a chordal graph. Use a simplicial eliminatipn ordering of G td prove
the follo\ing statements.

a) G\has at most n maximal cliques, with equality if and \nly if G hag’no edges.
(Fulkersoh—Gross [1965])

b) Evéry maximal clique of G containing no simplicial vertex okG is gfeparating set.
5.3.21. Thé Szekeres-Wilf number of a graph G is 1 + max,-#(H). Prove that a

graph G is chordal if and only if in every induced subgraph the S#ekeres—Wilf number
equals the clijue number. (Voloshin [1982])

5.3.22. Let &, () be the number of r-cliques i/ a connected cordal grjph G. Prove that
Y 21(=1)"" " (G) = L. (Hint: Use inductign on n(G). Noge that the Binomial formula
(Appendix A) imdplies that } ._o(~1)/("})/~ 0 when m € )

5.3.23. Let § be|the vertex sbt of a e in a chorddl graph G. Prove\that G has a
cycle whose vertex set consists 0fa}l but one elemepft of §. (Comment: G hasa

spanning cycle and § C V(G), Hepfiwy conjectured that G also has a cycle whose vertex
set consists of S plus one vertex.)/(Hendsy [1990

5.3.24. Let e be a bdge of a cytle C in a chorg@l graph. Prove that e forms W triangle
with a third vertex &f C.

5.3.25. Let O be a maygimal ¢lique in a chordal graph G."Rgove that if G — Q is con\nected,
then QO contains a simpliciaFvertex. (Volgshin—Gorgos [1982

5.3.26. Exercise 5.3.13 §stablishes th¢/formula x(G U H; k) = LEOXHD when G VY is

(GNH:k)
a complete graph. !
a) Prove that the fortula holdd when GUH is a chordal graph regardless of whether
G N H is a complete graph.

b) Prove that if x is a\vertgk in a chordal graph G, then
X(GIN@ k-1)
X(GIN(x)]; k)

(Comment: Part (b) allgis thg chromatic polynomial of a chordal graph to be computed
via an arbitrary elimigfation or\lering. For example, eliminating the central vertex of P;
ields x (Ps; k) = k(' — 1))2k %N = k(k — 1)%.) (Voloshin [1982])

. (+) A migfimal vertex séparator in a graph G is aset § € V(G) that for some
pair x, jAimal set whose déetion separates x and y. Every minimal separating
set is a minimyAl vertex separator, b\t u, v below show tht the converse need not hold.
a) Proyé that if every minimal\vertex separator jA G is a clique, then the same
property h6lds in every induced subgyaph of G.
b) Prove that a graph G is chordal if and only if every minimal vertex separator is
a cligye. (Dirac [1961])

X(Gxk) = x (G — x; )k

]

y

5.3.28. (!) Let G be an interval graph/ Prove that G is a dhordal graph and that G is a
comparability graph.
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mbermine the smallest imperfect graph G such that x (G) = w(G).

&M- edge in an acyclic orientation of G is dependent if reversing it yields a cycle.
a) Prove that every acyclic orientation of a connected n-vertex graph has at least

n — 1 independent edges.

b) Prove that if x (G) is less than the girth of G, then G has an orientation with no
dependent edges. (Hint: Use the technique in the proof of Theorem 5.1.21.)

5.3.31. (x) The number a(G) of acyclid orientations of G s

a(G — e) + a(G - e) (Theorem 5.3.27).
satisfy the same recurrence; does the n
the number of spanning trees? Why or wh;

5.3.32. (%) Let D be an acyclic orientation
the set [k]. We say that (D, f) is a compatib
Let n(G; k) be the number of compatible
(Stanley [1973])

isfies the recurrence a(G) =
nning trees of G appears to
j# orientations of G always equal

d let f be a coloring of V(G) from
rifu — vin D implies f(x) < f(v).
e that n(G; k) = (—1)"©x(G; k).

Chapter 6

Plgnar Graphs

6.1. Embeddings and Euler’s Formula

Topological graph theory, broadly conceived, is the study of graph layouts.
Initial motivation involved the famous Four Color Problem: can the regions
of every map on a globe be colored with four colors so that regions sharing a
nontrivial boundary have different colors? Later motivation involves circuit
layouts on silicon chips. Wire crossings cause problems in layouts, so we ask
which circuits have layouts without crossings.

DRAWINGS IN THE PLANE
The following brain teaser appeared as early as Dudeney [1917].

6.1.1. Example. Gas-water-electricity. Three sworn enemies A, B, C live in
houses in the woods. We must cut paths so that each has a path to each of three
utilities, which by tradition.are gas, water, and electricity. In order to avoid
confrontations, we don’t want any of the paths to cross. Can this be done? This
asks whether K33 can be drawn in the plane without edge crossings; we will
give two proofs that it cannot. [ ]

Arguments about drawings of graphs in the plane are based on the fact
that every closed curve in the plane separates the plane into two regions (the
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